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Spectral Schemes on Triangular Elements
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The Poisson problem with homogeneous Dirichlet boundary conditions is consid-
ered on a triangle. The transformation from square to triangle is realized by mapping
an edge of the square onto a corner of the triangle. Then standard Chebyshev col-
location techniques can be implemented. Numerical experiments demonstrate the
expected high spectral accuracy for smooth solutions. Furthermore, it is shown that
finite difference preconditioning can be successfully employed to construct an ef-
ficient iterative solver. Then the convection–diffusion equation is considered. Here
finite difference preconditioning with central differences leads to instability. How-
ever, using the first-order upstream scheme, we obtain a stable method. Finally, a
domain decomposition technique is applied to the patching of rectangular and trian-
gular elements. c© 2001 Academic Press

Key Words:spectral; collocation; triangle; preconditioning; Poisson; convection–
diffusion; domain decomposition.

INTRODUCTION

Pseudospectral collocation methods deliver good approximations for smooth solutions of
elliptic partial differential equations. However, they possess a great disadvantage as these
methods are confined to rectangles. Additionally, the spectral operator is ill-conditioned
compared with finite difference or finite element operators and requires preconditioning to
construct an effective iterative solver.

Here, we apply the standard Chebyshev collocation method for solving partial differential
equations on certain right triangles. We introduce a transformation between the triangle and
the standard square where spectral collocation can be applied. This transformation maps one
edge of the square onto one corner of the triangle so that the nonequally spaced collocation
points cluster in that corner. Mavriplis and Van Rosendale [13] consider a different approach.
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They take half the nodes and then use our transformation only for quadrature. This leads
to a reduced computational effort for evaluation of residuals but to a somewhat slower
approximation rate since less collocation points and polynomial degrees are used. We do not
use quadrature here. The tensor product development and the method of nested quadrature
lead to a cost ofO(N3). Karniadakis and Sherwin [12] use our horizontal mapping in
their (3.4), (3.5). The only difference is that the triangle lies in [−1, 1] instead of [0, 1].
Therefore in the 2D case our results are comparable to their work. In [11] another approach
has been examined. Our results are compared to those in [11] and we present a comparison
of collocation points.

Our method is then applied to the Poisson equation with homogeneous Dirichlet boundary
conditions on a right triangle. It is numerically shown that for smooth solutions high spectral
accuracy can be achieved, and as a second example we use a function that possesses poles
outside the triangle. Then we introduce a singularity caused by the behavior of the right-
hand side leading to a somewhat slower convergence of the approximation. This could be
overcome by mapping techniques as in Boyd [1, 2]. Preconditioning by finite differences
yields a condition number increasing asO(N).

The convection–diffusion equation is then considered. To overcome the instability for
smallε we chooseN odd (see [6]). Preconditioning by central finite differences yields an
unbounded condition number such that an upwind method has to be applied. Dubiner [5]and
Sherwin and Karniadakis [16] introduce a different basis which is useful if time-dependent
problems have to be treated.

Finally, domain decomposition problems are investigated. The Poisson problem is nu-
merically solved on patchings of rectangular and triangular elements. A Dirichlet–Neumann
interface relaxation is iterated until continuity of normal derivatives is achieved. By numeri-
cal results the efficiency of this treatment is demonstrated. As in [13] we recommend the use
of quadrilateral elements as often as possible (e.g., for the interior of a domain) and trian-
gles for approximation along edges. Delveset al. examine and apply domain decomposition
effectively in [4].

TRANSFORMATION OF THE RIGHT TRIANGLE

The standard Chebyshev collocation scheme (see [3, 14]) is defined for the nonequally
spaced Chebyshev–Gauss–Lobatto nodes(si , t j ) = (cos iπ

N , cos jπ
N ) on the square [−1, 1]2.

Using linear transforms, arbitrary rectangles can be considered. However, if we are inter-
ested in triangular domains the mapping is more complicated. In [11] a mapping applying
polar coordinate transformation and bending of an edge of the triangle was introduced and
analyzed. Numerical results showed the effectiveness of this method. Here we consider
a new transformation between the standard squareR= {(x, y) | −1< x, y < 1} and the
right triangleT = {(x, y) | 0< x, y < 1, andx + y < 1}. The original mapping is given
in [16] and has been changed for our purposes. The transformation reads as

x = 1

4
(xR+ 1)(1− yR), y = 1

2
(yR+ 1),

xR = 2x

1− y
− 1, yR = 2y− 1

and is displayed in Fig. 1.
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FIG. 1. Horizontal transformation.

We will call this the horizontal transform as every node is actually moved horizontally.
The vertical transform is

x = 1

2
(xR+ 1), y = 1

4
(yR+ 1)(1− xR),

xR = 2x − 1, yR = 2y

1− x
− 1

and will find an application later on.
This transformation is no longer injective. We will see that this does not affect the

accuracy of our approximation. The upper edge ofR is mapped ontoP(0, 1) onT . As this
edge belongs to the border of our domain, boundary conditions are applicable, which are
then treated separately. Complex boundary conditions can also be dealt with this way as
they become part of the spectral operator.

In addition, partial derivatives must be transformed. Using the horizontal transform we
derive

ux = 2ux1 =
4

1− yR
uxR,

uxx = 4ux1x1 =
16

(1− yR)2
uxRxR,

uy = 2uy1 = 2
xR+ 1

1− yR
uxR + 2uyR,

uyy = 4uy1y1 = 4
(xR+ 1)2

(1− yR)2
uxRxR + 8

xR+ 1

1− yR
uxRyR + 8

xR+ 1

(1− yR)2
uxR + 4uyRyR.

The Laplacian then reads as follows:

1u = uxx + uyy

= 4
4+ (xR+ 1)2

(1− yR)2
uxRxR + 8

xR+ 1

1− yR
uxRyR + 8

xR+ 1

(1− yR)2
uxR + 4uyRyR.



282 HEINRICHS AND LOCH

THE POISSON PROBLEM

Numerous spectral algorithms for the numerical simulation of physical phenomena
demand the approximate solution of one or more Poisson problems in a bounded domain.

We now study the problem

1u = f in T,

u = 0 on∂T,

where∂T denotes the boundary ofT . We apply the standard Chebyshev collocation scheme
to the exact solutions

u1(x, y) = xy(ex+y − e) (1)

and

u2(x, y) = xy
1− x − y

(x + δ)(y+ δ) . (2)

These functions obviously fulfill the boundary condition. The first function is smooth ev-
erywhere whereas the second function possesses poles at(x, y) = (−δ,−δ). We choose
δ = 0.1, leaving the poles outside the triangle.

Table I shows the discreteL2 error E2 :=‖u− uN‖2/N. One observes the exponential
decay of the error for Example 1 and slower convergence for Example 2. As we can see, high
spectral accuracy can also be reached on the triangleT . We find that the best approximation
of the solution is at P(0, 1), as the collocation points cluster there. Figure 2 shows the
position of the collocation points forN = 16 on the triangle and on the square.

For the smooth solution the horizontal mapping yields much better approximation results
than the radial mapping (see Table 1). This results from the clustering of points at (0, 1) for
the horizontal mapping, whereas for the radial mapping they group at (0, 0). At (0, 0) the
solutionu1 is highly smooth so that a clustering of collocation points in this region is not
necessary. It is desirable to have a higher density of points at (0, 1), whereu1 is somewhat
steeper.

By the linear transformation

T(x, y) = (1− x − y, x)

the corner points of the triangle are rotated in a mathematically positive sense. The
transformed collocation points of the horizontal mapping also cluster at (0, 0). Hence the

TABLE I

Error Using Horizontal Transformation and [11]

N E2 for u1 E2 for u1 in [11] E2 for u2

4 1.94 · 10−5 1.89 · 10−4 1.55 · 10−2

8 2.04 · 10−11 8.85 · 10−7 7.75 · 10−4

16 2.12 · 10−16 1.84 · 10−11 3.34 · 10−6

32 4.29 · 10−16 1.78 · 10−16 6.40 · 10−11
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FIG. 2. Positions of the Chebyshev collocation nodes forN = 16.

collocation sets of the horizontal and radial mapping are now comparable. The modified
horizontal mapping reads

(x, y) =
(

1− 1

4
(xR+ 1)(1− yR)− 1

2
(yR+ 1),

1

4
(xR+ 1)(1− yR)

)
= 1

4
(xRyR− xR− yR+ 1, (xR+ 1)(1− yR))

= 1

4
(1− yR)(1− xR, 1+ xR),

wherexR, yR ∈ [−1, 1] denote the rectangular coordinates. The radial mapping forθ1 = π
2 ,

t1 = 1 (see [11]) is given by

(x, y) = r

cosθ + sinθ
(cosθ, sinθ).

Using rectangular coordinatesxR, yR we now write

r = 1

2
(1− yR), θ = π

4
(1+ xR).

Herer ∈ [0, 1] wherer = 0 for yR = 1 andr = 1 for yR = −1. As a result of symmetry
this yields the same collocation points as the original mappingr = 1

2(1+ yR) but with
different numbering.

By this substitution we obtain

(x, y) = 1

4
(1− yR)(1− zR, 1+ zR),

where

zR = zR(xR) =
sin π

4 (1+ xR)− cosπ4 (1+ xR)

sin π
4 (1+ xR)+ cosπ4 (1+ xR)

.

Here zR denotes a one-to-one mapping from [−1, 1] onto [−1, 1]. If zR is equal to the
identity, i.e.,zR(xR) = xR, we obtain the horizontal mapping. Hence the main difference
between the horizontal and the radial mapping can be expressed by the one-to-one function
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FIG. 3. Collocation points forN = 2 (dots) andN = 3 (circles) compared to [11].

zR. Other mappings could also be generated by other choices ofzR. Using the Chebyshev
collocation nodes we obtain forN = 2

xR ∈ {−1, 0, 1}, zR ∈ {−1, 0, 1}.

Hence forN = 2 both mappings yield the same collocation points. This is no longer true
for N ≥ 3. ForN = 3 we derive

xR ∈ {−1,−1/2, 1/2, 1}, zR ∈ {−1, 1−
√

2,
√

2− 1, 1},

which are obviously different. The collocation points on the original triangles for both
mappings (N = 3) are plotted in Fig. 3.

Next we consider the singular problem wheref ≡ −1. We compare the results forN = 4,
8, 16, and 32 to those obtained forN = 36 at the fixed points displayed in Fig. 4. These
points are the collocation nodes forN = 4 which are also used for largerN divisible by
4. We expect the error to be smallest close toy = 1 because there the collocation nodes
cluster. We deal with the following nodes:

P1(0, 0), P2

(√
2

2
,−
√

2

2

)
, P3

(
−
√

2

2
,

√
2

2

)
, P4

(√
2

2
,

√
2

2

)
,

and P5

(
−
√

2

2
,−
√

2

2

)
.

The approximation converges more slowly than in the last examples due to the incompati-
bility of the differential equation and its boundary condition.

FIG. 4. Positions of the five nodes.
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FIG. 5. Poisson problem with constantf .

To obtain an overview we presentE R= |uN − u36|, which is the absolute value of the
difference for every node, in a diagram (Fig. 5). The results at points between the nodal
points are comparable. It can be seen that away from the singularity the error is uniformly
distributed.

Next we choosef discontinuous:

f (x, y) =
{
−1 for y− x > 0,

0 for y− x ≤ 0.

As Fig. 6 shows the triangle is now bisected. The transformation of the liney = x on
the triangle gives the hyperbolay = 2x+1

x+3 − 1 on the square. The results can be found
in Fig. 7. The approximation is relatively inaccurate close to the separating line. Sincef
is discontinuous the solution of the partial differential equation is no longer smooth and
there is no high spectral accuracy. Hence we only have a first-order method. Forf = −1
the solution is singular in the corners and this slows down the convergence speed of the
spectral Chebyshev method. By mapping techniques (see [1, 2]) the convergence speed can
be dramatically improved.

FIG. 6. Transformation of the line.
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FIG. 7. Poisson problem with discontinuousf .

PRECONDITIONING

We are interested in a good condition number of our spectral operator which does not
increase too fast for efficient iterative solvers to be found. Here the maximum eigenvalues
of the spectral Laplacian on the triangle increase proportionally toO(N8) (Fig. 8). On the
square one hasO(N4), which is certainly preferrable. We are looking for a preconditioner
to improve the condition so that it grows proportionally toO(N) or even independently of

FIG. 8. λmax andλmin for LSP, L2,SP, and [11].
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TABLE II

Condition Numbers

N LSP L2,SP [11]

4 1.01 · 102 1.18 · 101 2.26 · 101

8 2.23 · 104 1.83 · 102 4.15 · 102

16 5.49 · 106 2.94 · 103 7.00 · 103

32 1.39 · 109 4.71 · 104 1.15 · 105

N. A good preconditioner also has to be a good approximation of the inverse of the spectral
operator. It can be seen that the condition number is already reduced if we multiply the
operator by(1− yR)

2. The partial derivatives contain this factor in the denominator. Fory
close to 1 the influence of the appropriate partial derivative is extremely high. The discretized
operator is calledL2,SP. Its condition number increases proportionally toO(N4). Figure 8
showsλmax := max{|λ| | λ eigenvalue} andλmin := min{|λ| | λ eigenvalue} of LSP, L2,SP,
and [11]. The condition numberscond≈ λmax/λmin can be found in Table II. Our results
are comparable to those in [11].

We now study the finite difference preconditionerLFD, which is the discretization of the
Laplacian by second-order finite differences. The first and second derivatives are

w′(sj ) = 1

2
(−γ j−1w(sj−1)− (γ j − γ j−1)w(sj )+ γ jw(sj+1)),

w′′(sj ) = 2δ j (γ j−1w(sj−1)− (γ j + γ j−1)w(sj )+ γ jw(sj+1))

where

δ j = 1

sj+1− sj−1
,

γ j = 1

sj+1− sj
for j = 1, . . . , N − 1 (see [11]).

Table III shows the improved results.
Now we have obtained a condition number scaling asO(N). We could now construct an

effective iterative solver.
Figure 9 shows the positions of the eigenvalues forN = 32. Their imaginary parts are

fairly small and the real parts are contained in [0.5, 3].

TABLE III

(LFD)−1LSP and results in [11]

N λmax λmin cond λmax λmin cond

4 1.73 1.00 1.73 1.71 0.99 1.73
8 2.13 0.89 2.41 2.12 0.99 2.13

16 2.50 0.71 3.53 2.41 0.80 3.01
32 2.91 0.60 4.89 2.83 0.66 4.31
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FIG. 9. Eigenvalues of(LFD)
−1LSP for N = 32.

One could apply higher order finite difference methods for an even better condition
number. However, this would result in an extended effort for solving the FD problem.

In summary, this transformation between triangle and square gives comparable or better
results than the transformation by polar coordinates in [11].

THE CONVECTION–DIFFUSION EQUATION

Modeling of purely convectional or convection dominated processes is a central problem
in areas such as meteorology or investigation of aerodynamical or geophysical flows. A
model boundary value problem is the convection–diffusion equation

−ε1u+ aux + buy = f in T,

u = 0 on∂T,

which can be used for describing the expansion of temperature in a fluid. Temperature
diffuses uniformly in every direction and we can express this by−ε1u. It is also spread by
current (called convection) and is described byaux + buy (a andb being the velocities in
thex and iny direction).

As usual,ε is the viscosity of our material and represents a measure of interior friction.
As the partial differential equation is of different type forε > 0 andε = 0 (in the first case
it is elliptic and in the latter it is hyperbolic) we talk about singular behavior. In the interior
of our domainuε andu0 are close together; however when getting nearer to the boundary
they differ significantly.

Homogeneous Dirichlet boundary conditions are not, however, applicable to hyperbolic
problems. As a result, we now have to deal with boundary layers. Boundary layers are
environments where derivatives ofuε scale asO( 1

ε
). Those systems are also called stiff

systems. Unphysical oscillations occur in the numerical solution and the discretization is
unstable. Figure 10 shows the situation in one dimension (see [9], [10]).
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FIG. 10. Boundary layer.

We are looking for a method to resolve the boundary layers. There are schemes that
use spectral methods such as adding artificial viscosity, spectral viscosity, or streamline
diffusion. However, here we only choose oddN. Oscillations always arise and increase for
evenN with ε ¿ N−2 while this is not the case ifN is odd.

Table IV contains the discreteL2 error for decreasingε which develops when discretizing
the convection–diffusion equation by spectral collocation. Here we choose (a, b) = (1, 1)
and (−1, 1) because these two cases are good representatives of other choices of (a, b).
We have tested the algorithm with Example 1. In the case of pure convection (ε = 0) the
method is unstable. With decreasingε the singular behavior increases and one has to choose
a finer grid (largerN) to obtain results comparable toε = 1.

As already mentioned, we now chooseN odd, which usually leads to a decreased error.
This behavior was analyzed in [6] in one dimension on the square. It can be transferred to the
triangle with a few restrictions concerning the choice of parameters. IfN is even there exists
an interpolation polynomial which fulfills the boundary conditions and whose derivative

TABLE IV

Error for the Convection–Diffusion Equation

E2

(a, b) N ε = 1 ε = 10−2 ε = 10−4 ε = 10−6 ε = 0

(1, 1) 3 2.75 · 10−4 2.21 · 10−3 2.15 · 10−3 2.15 · 10−3 2.15 · 10−3

7 8.75 · 10−10 4.08 · 10−9 7.77 · 10−9 7.77 · 10−9 7.77 · 10−9

15 3.77 · 10−16 5.32 · 10−17 1.81 · 10−16 1.50 · 10−16 1.14 · 10−16

31 5.08 · 10−16 1.72 · 10−16 2.27 · 10−16 5.64 · 10−16 3.67 · 10−16

(−1, 1) 3 2.56 · 10−4 3.75 · 10−3 1.69 · 10−1 1.68 · 101 1.09 · 1013

7 8.76 · 10−10 5.16 · 10−9 1.86 · 10−7 1.86 · 10−5 1.59 · 108

15 1.06 · 10−16 7.53 · 10−17 1.86 · 10−16 2.70 · 10−14 5.75 · 10−1

31 4.25 · 10−16 2.27 · 10−16 4.74 · 10−16 2.90 · 10−14 4.36 · 100
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vanishes at the collocation points. This polynomial is responsible for the instability. In
contrast, ifN is odd one finds the proof in [6] that this polynomial does not exist. Apparently,
there are parameters (a, b) for which the spectral method is unstable even for oddN. For
the stable case (1, 0) we actually have the regular operator∂

∂x on the square multiplied by
a factor. For (−1, 1) we have such a combination of the first derivatives on the square that
there are at least two equal rows in the derivative matrix. The partial derivatives are based
on the matrixDN . Because the collocation points on the square are symmetric (for every
positive node we find a corresponding negative one) cancelation occurs in the derivative
matrix. The following example forN = 3 shows the connection:uy = 2xR+1

1−yR
uxR + 2uyR

yields the derivative matrix



−s1
(1−s1)2

− s1

(1−s2
1)

−2(s1+1)
(1−s1)(s1−s2)

−2
s1−s2

0

−2(s2+1)
(1−s1)(s2−s1)

−s2
(1−s1)(1−s2)

− s1

1−s2
1

0 −2
s1−s2

−2
s2−s1

0 −s1
(1−s2)(1−s1)

− s2

1−s2
2

−2(s1+1)
(1−s2)(s1−s2)

0 −2
s2−s1

−2(s2+1)
(1−s2)(s2−s1)

−s2
(1−s2)2

− s2

1−s2
2


.

Becauses1 = −s2 (symmetry) the second and third rows of the matrix are equal and so the
matrix is singular. The same behavior is displayed at (−1, 1).

For (1, 1) we do not have cancelations and the method is stable. Table IV displays the
results; (0, 1) can be stabilized by using the vertical transformation wherex and y are
exchanged.

Next a constant right-hand side is considered. The differential equation and its boundary
condition are not compatible here, i.e.

−ε1u+ aux + buy = 1 in T,

u = 0 on∂T.

Table V shows the differenceERof u36 anduN at P1(0, 0). P1(0, 0) is in the center of
the triangle and therefore far away from any boundary. It is the only collocation point (out
of P1–P5) where stability is achieved for (1, 1) for smallε.

TABLE V

Error for Constant f in P1

ER

(a, b) N ε = 1 ε = 10−2 ε = 10−4 ε = 10−6 ε = 0

(1, 1) 4 1.34 · 10−4 1.99 · 10−1 9.53 · 10−2 2.72 · 10−2 4.11 · 10−1

8 1.86 · 10−6 5.99 · 10−2 7.82 · 10−2 4.83 · 10−3 1.14 · 10−1

16 1.12 · 10−8 1.24 · 10−3 6.20 · 10−2 7.03 · 10−3 8.06 · 10−1

32 8.91 · 10−11 1.68 · 10−7 1.26 · 10−2 1.58 · 10−3 2.89 · 10−2

(−1, 1) 4 6.80 · 10−5 2.20 · 10−1 2.34 · 101 2.35 · 103 1.79 · 1015

8 1.56 · 10−6 6.71 · 10−2 1.43 · 100 1.41 · 102 1.27 · 1015

16 1.11 · 10−8 2.10 · 10−3 1.75 · 10−3 2.45 · 101 1.27 · 1015

32 8.88 · 10−11 1.31 · 10−5 6.21 · 10−2 2.17 · 100 2.06 · 1015
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TABLE VI

Error for Discontinuous f in P1

ER

(a, b) N ε = 1 ε = 10−2 ε = 10−4 ε = 10−6 ε = 0

(1, 1) 4 1.53 · 10−3 1.68 · 10−1 1.08 · 10−1 2.00 · 10−2 3.69 · 10−1

8 4.29 · 10−4 2.00 · 10−2 7.42 · 10−2 1.66 · 10−2 8.56 · 10−2

16 1.36 · 10−4 3.64 · 10−4 4.14 · 10−2 2.37 · 10−2 8.89 · 10−1

32 9.35 · 10−5 5.88 · 10−4 1.89 · 10−2 1.73 · 10−3 3.08 · 10−2

(−1, 1) 4 1.70 · 10−3 1.39 · 10−1 5.46 · 100 5.48 · 102 3.43 · 1014

8 4.94 · 10−4 6.86 · 10−2 1.93 · 100 1.96 · 102 9.23 · 1014

16 1.53 · 10−4 4.65 · 10−3 2.35 · 10−1 3.61 · 101 5.63 · 1014

32 1.02 · 10−4 1.79 · 10−3 3.64 · 10−2 3.08 · 10−1 8.96 · 1014

A discontinuous right-hand side

f (x, y) =
{−1 for y− x > 0,

0 for y− x ≤ 0

yields an even slower convergence rate than the last example (Table VI).

PRECONDITIONING

For the construction of an effective iterative solver we now examine the condition number
of the spectral operatorL2,ε of (1− yR)

2(−ε1+ aux + buy).
Figures 11 and 12 show the positions of the eigenvalues forε = 1 andε = 10−6 for

(a, b) = (1, 1), N = 15.
Table VII givesλmax, λmin, andcondand demonstrates that there is an eigenvalue close

to 0 for (−1, 1).

FIG. 11. Eigenvalues ofLε
2,SP for N = 15,(a, b) = (1, 1).
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FIG. 12. Eigenvalues ofLε
2,SP for N = 15,(a, b) = (1, 1).

Applying the inverse of the finite difference operatorLεF D as preconditioner, we observe
decreased condition number ifε = 1 while for smallε, λmax is unbounded for (1, 1). This
preconditioner obviously does not stabilize.

Figures 13 and 14 show the positions of the eigenvalues. For smallε they are relatively
densely positioned with few peak values.

In general, finite difference methods applied to singular disturbance problems are stable
if the step sizehi < 2ε. However, if hi À ε they are unstable. To obtain stability one
could increase the number of collocation points, which reduces the step size. A more
promising attempt is the application of the upwind method. The first derivatives∂

∂x and ∂
∂y

(the convectional part) are discretized by one-sided stream-directed finite differences while
the diffusive part is treated with central differences. We lose one order in convergence but
stability is achieved.

We have

a · ux = a · 4

1− yR
· uxR

TABLE VII

Lε2,SP

ε = 1 ε = 0

(a, b) N λmax λmin cond λmax λmin cond

(1, 1) 3 2.20 · 102 5.91 · 101 3.72 · 100 8.76 · 100 2.43 · 100 3.60 · 100

7 5.71 · 103 5.36 · 101 1.06 · 102 8.63 · 101 7.02 · 10−1 1.23 · 102

15 1.20 · 105 5.32 · 101 2.26 · 103 4.43 · 102 1.73 · 10−2 2.57 · 103

31 2.20 · 106 5.30 · 101 4.15 · 104 1.96 · 103 4.24 · 10−2 4.62 · 104

(−1, 1) 3 2.22 · 102 5.82 · 101 3.82 · 100 3.27 · 100 0.00 · 100

7 5.75 · 103 5.36 · 101 1.07 · 102 5.03 · 101 2.60 · 10−16 1.93 · 1017

15 1.21 · 105 5.32 · 101 2.27 · 103 2.86 · 102 6.61 · 10−16 4.33 · 1017

31 2.20 · 106 5.30 · 101 4.15 · 104 1.29 · 103 6.52 · 10−16 1.98 · 1018
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FIG. 13. Eigenvalues ofL−1
FD LSP for N = 15, (a, b) = (1, 1).

and

b · uy = b ·
(

2
xR+ 1

1− yR
· uxR + 2uyR

)
.

Depending on the coefficients the derivativesuxR and uyR are discretized by left- or
right-differences in the stream direction,

uxR(xi , yj ) ∼=


u(xi+1, yj )− u(xi , yj )

xi+1− xi
if a ≥ 0,

u(xi , yj )− u(xi−1, yj )

xi − xi−1
if a < 0

for i = 0, . . . , N − 1 or i = 1, . . . , N. We follow a similar process foruyR. The upwind
method is not uniformly convergent. An adaptive refinement might help in this case.

FIG. 14. Eigenvalues ofL−1
FD LSP for N = 15,(a, b) = (1, 1).
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FIG. 15. Eigenvalues of the upstream operator forN = 15,(a, b) = (1, 1).

Figures 15 and 16 show that applying the upstream method completely changes the
positions of the eigenvalues for smallε. They are now complex, bounded, and symmetric.
Table VIII gives the numerical results for the upstream scheme.

It is unsatisfactory that there are cases (e.g., (−1, 1)) in which we cannot achieve stabi-
lity. One solution may be to introduce an additional collocation point. The system is then
overdetermined. This method has been examined and successfully applied on the square
in [6]. An alternative method may be the use of staggered grids, which possibly lead to
λmin > 0. Two different sets of grids are used—one for the solution and the other for its
derivative. For the advection–diffusion equation, positive results were found in [7].

One of the potential problems with using a tensorial expansion based on nonorthogonal
coordinates, as adopted in this work, is that the convection operator has a condition number
that grows proportional toN4. The growth of the condition number can be a problem

FIG. 16. Eigenvalues of the upstream operator forN = 15,(a, b) = (−1, 1).
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TABLE VIII

Upstream Method

(1, 1) (−1, 1)
(a, b)

ε N λmax λmin cond λmax λmin cond

1 3 1.40 9.28 · 10−1 1.51 1.41 9.35 · 10−1 1.50
7 2.06 8.61 · 10−1 2.39 2.06 8.58 · 10−1 2.40

15 2.39 6.99 · 10−1 3.42 2.39 6.97 · 10−1 3.43
31 2.85 5.91 · 10−1 4.82 2.85 5.91 · 10−1 4.82

10−2 3 6.04 · 10−1 3.04 · 10−1 1.98 2.86 · 10−1 1.11 · 10−1 2.58
7 1.37 2.99 · 10−1 4.56 1.46 2.67 · 10−1 5.49

15 2.18 4.09 · 10−1 5.34 2.19 4.81 · 10−1 4.55
31 2.37 4.34 · 10−1 5.47 2.37 5.08 · 10−1 4.67

10−4 3 6.66 · 10−1 3.15 · 10−1 2.11 3.33 · 10−1 1.41 · 10−3 2.35 · 102

7 1.14 1.50 · 10−1 7.61 1.19 3.10 · 10−3 3.84 · 102

15 1.29 8.44 · 10−2 15.3 1.30 8.37 · 10−3 1.56 · 102

31 1.82 8.08 · 10−2 22.5 1.82 1.74 · 10−2 1.05 · 102

10−6 3 6.67 · 10−1 3.15 · 10−1 2.11 3.33 · 10−1 1.42 · 10−5 2.34 · 104

7 1.15 1.50 · 10−1 7.65 1.20 3.11 · 10−5 3.85 · 104

15 1.31 7.79 · 10−2 16.8 1.31 8.41 · 10−5 1.55 · 104

31 1.41 5.72 · 10−2 24.7 1.34 1.79 · 10−4 7.50 · 103

0 3 6.67 · 10−1 3.15 · 10−1 2.11 3.33 · 10−1 2.25 · 10−17 1.48 · 1016

7 1.15 1.50 · 10−1 7.65 1.20 1.84 · 10−18 6.48 · 1017

15 1.31 7.78 · 10−2 16.8 1.31 6.61 · 10−18 1.98 · 1017

31 1.41 5.69 · 10−2 24.8 1.34 5.21 · 10−17 2.58 · 1016

due to prohibitive time-step restrictions when explicitly treating the convection operator,
which may be necessary in nonlinear advective problems. Dubiner [5] and Sherwin and
Karniadakis [15] have already considered this by using expansion bases withN(N + 1)/2
degrees of freedom rather than ourN2 expansion. The Dubiner basis is useful for time-
dependent problems since the improved condition number makes the impact of the time-step
limits less severe. Turning from boundary value problems to time-dependent Navier–Stokes
flow, explicit time schemes then lead to extremely small time steps. This is typical for
singular mappings of this kind.

DOMAIN DECOMPOSITION

We are now interested in applying the spectral method to more complex domains. We
use the patching method (see [8]) where the domain is separated into square or triangular
subdomains on which Gauss–Lobatto nodes are defined. The differential equation is solved
at the interior nodes. At the interface we require continuity of the solution and its normal
derivative. We consider the Poisson equation with the Dirichlet boundary condition

1u = f in Ä,

u = g on ∂Ä.

At the interface0 between two subdomains, information is exchanged until continuity
is reached. In one direction Dirichlet information is transferred and in the other direction
Neumann information. We use an interface relaxation as proposed in [8]; i.e., at the Dirichlet
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FIG. 17. DomainÄ.

side we hand over a weighted sum of subsolutions at the interface. We iterate until the error
at the interface is smaller than 10−14. Therefore we solve a sequence of Dirichlet–Neumann
problems.

We begin with a domain composed of one patched triangle and squareÄ = T ∪ Rwhere

T = {(x, y) | 0< x, y < 1, and x + y < 1}
and

R= {(x, y) | 0< x < 1 and − 1< y < 0}.
The interface is0 = (0, 1)× {0} (Fig. 17). Initial conditions areu0

1 = u0
2 ≡ 0 onÄ and

u1
1 = g on0. We then iterate

1um
1 = f in T,

um
1 = g on ∂T \ 0,

um
1 = δm−1um−1

2 + (1− δm−1)um−1
1 on0

and

1um
2 = f in R,

um
2 = g on ∂R \ 0,

∂

∂y
um

2 =
∂

∂y
um

1 on0.

TABLE IX

Ω with (3)

N Iterations E2T E2R

4 15 1.36 · 10−2 1.28 · 10−2

8 17 2.42 · 10−5 1.64 · 10−5

16 17 8.01 · 10−13 4.24 · 10−13

32 17 1.00 · 10−14 1.60 · 10−14
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FIG. 18. DomainÄ1.

Here δm denotes the relaxation parameter, which is chosen dynamically. This dynami-
cal choice usually accelerates the convergence. The unique numberδm = δ minimizes
‖zm(δ)− zm−1(δ)‖22, wherezm(δ) = δum

2 + (1− δ)um
1 · δm is calculated by

δm =
(
em

1 , e
m
1 − em

2

)∥∥em
1 − em

2

∥∥2
2

,

where (. , .) denotes the discreteL2 inner product and

em
i = um

i − um−1
i for i = 1, 2

is the difference of two consecutive iterates on the two subdomains. Hereδm should be in
(0, 1]. We cannot use Example 1 since this function vanishes at the interface. Therefore no
new information is exchanged, which makes an iterative method superfluous as it converges
after the first step. Thus we introduce the following oscillating example:

u(x, y) = sin(πx) sin

(
πy+ π

4

)
. (3)

Table IX shows the number of iterations and the discreteL2 error on the defined square
and triangle (Fig. 17). We reach the tolerance after relatively few steps. The convergence is

TABLE X

Ω1 with (4)

N Iterations E2T E2R E2T1

4 65 1.04 · 10−2 9.62 · 10−3 1.25 · 10−2

8 83 6.98 · 10−6 5.67 · 10−6 2.68 · 10−5

16 84 6.85 · 10−13 4.01 · 10−13 1.02 · 10−12

32 90 2.31 · 10−13 8.30 · 10−14 9.90 · 10−14
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TABLE XI

Ω1 with (4) and δm = 0.5

N Iterations E2T E2R E2T1

4 34 4.89 · 10−4 2.82 · 10−4 1.51 · 10−3

8 41 9.29 · 10−9 2.30 · 10−9 6.82 · 10−8

16 46 1.78 · 10−13 3.70 · 10−14 1.83 · 10−13

32 87 9.68 · 10−13 8.40 · 10−14 1.01 · 10−12

fairly slow because of the oscillatory behavior of the solution. The number of iterations is
constant and independent ofN. Machine accuracy is reached forN = 16.

The second domainÄ1 to be studied consists ofÄ and an additional triangleT1 attached
to the already existing triangle (Fig. 18). We begin with triangleT with interface boundaries
01 = (0, 1)× {0} and02 = {0} × (0, 1) and0 = 01 ∪ 02. We then solve onRandT1. This
should be done on a parallel computer. The algorithm reads

1um
1 = f in T,

um
1 = g on ∂T \ 0,

um
1 = δm−1

1 um−1
2 + (1− δm−1

1

)
um−1

1 on01,

um
1 = δm−1

2 um−1
3 + (1− δm−1

2

)
um−1

1 on02,

and

1um
2 = f in R,

um
2 = g on ∂R \ 01,

∂

∂y
um

2 =
∂

∂y
um

1 on01,

FIG. 19. “Wind wheel”Ä2.
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TABLE XII

Ω2 with (5)

N Iterations E2R E2T1 E2T2 E2T3 E2T4

8 75 9.00 · 10−2 5.86 · 10−2 7.55 · 10−2 4.89 · 10−2 7.13 · 10−2

16 72 4.33 · 10−5 2.08 · 10−5 4.70 · 10−5 1.79 · 10−5 4.63 · 10−5

32 69 3.83 · 10−13 5.10 · 10−14 1.06 · 10−13 6.60 · 10−14 8.60 · 10−14

and

1um
3 = f in T1,

um
3 = g on ∂T1 \ 02,

∂

∂x
um

3 =
∂

∂x
um

1 on02.

Initial values are analogous to the last example. We apply this algorithm to the example

u(x, y) = sin

(
πx + π

4

)
sin

(
πy+ π

4

)
. (4)

The results are listed in Table X. The number of iterations is increased significantly if a
further triangle is added. Unfortunately,δm

i tends to leave the interval (0, 1]. Whenever this
happens, the following approximation is worse than the one directly before. Nevertheless,
the method finally converges. This dynamical choice ofδm

i is not optimal. We have derived
results for fixedδm

i = 1
2 in Table XI. The number of iterations is smaller and there are no

backward steps any more.
Next, we study the domainÄ2 = R∪ T1 ∪ T2 ∪ T3 ∪ T4 (Ti triangles), which is symmet-

ric to the origin (Fig. 19). We consider the following example:

u(x, y) = sin

(
3πx + π

4

)
sin

(
3πy+ π

4

)
. (5)

The algorithm is analogous to the last one and we first solve on the square and then on
the triangles. The results in Table XII are fairly good for reasons of symmetry considering

FIG. 20. DomainÄ3.
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TABLE XIII

Ω3 with (5)

N Iterations E2T E2T1 E2T2 E2T3

4 48 4.51 · 10−1 4.07 · 10−1 1.48 · 10−1 2.17 · 10−1

8 50 9.80 · 10−2 7.64 · 10−2 8.42 · 10−2 6.21 · 10−2

16 46 3.73 · 10−5 2.23 · 10−5 4.90 · 10−5 4.14 · 10−5

32 47 2.23 · 10−13 2.88 · 10−13 2.60 · 10−14 7.00 · 10−14

that we are now dealing with five subdomains. The number of iterations is constant and
machine accuracy is reached forN = 16.

Finally, to demonstrate that this method delivers satisfactory results for other cases,
we present domainÄ3 = T ∪ T1 ∪ T2 ∪ T3 (Fig. 20). As we now have only triangles,
considerably fewer of iterations are required and the results are comparable to the wind
wheel. Figure 21 shows theL2 error on collocation nodes.

We have not considered time-dependent problems since our method requires very short
time step limits because of the large condition number. Time-dependent problems cannot
be treated efficiently using this method.

In summary, we can state that this spectral method is also effective for time-independent
domain decomposition problems provided no cross points occur. Cross points are common
corners of at least four spectral elements. If there are cross points, the number of iterations
is quite large and so this method has to be improved. We can now also deal with partial
differential equations on complex domains using spectral methods as long as those domains
can be separated into rectangular and triangular elements. Delveset al. [4] found that domain
decomposition is effective when there are lines of discontinuity in the middle of the domain
or nasty corner singularities and they included maps of mixtures of squares and triangles in
their global approach.

FIG. 21. Error distribution inÄ3 with (4) andN = 8.
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